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Abstract—Recent improvement in genomic research is paving
the way towards significant progress in diagnosis and treatment
of diseases. A disease risk query returns the probability of a
patient to develop a particular disease based on her genomic
and clinical data. Despite various innovative prospects, frequent
and ubiquitous usage of genomic data in medical tests and
personalized medicine may cause various privacy threats like
genetic discrimination, exposure of susceptibility to diseases, and
revelation of genomic data of relatives. Another major concern is
on ensuring the reliability of the genome data and the correctness
of the computed disease risk, which is known as authentication.
We develop a novel secret sharing approach to protect privacy
of sensitive genomic and clinical data, disease markers, disease
name, and the query answer while ensuring authenticated result
of the disease risk query. Experiments with real datasets show
that our approach for authenticated disease risk queries achieves
a high level of privacy with reduced processing and storage
overhead.

Index Terms—Genomic privacy, secret sharing, authenticated
disease risk queries

I. INTRODUCTION

Rapid advancement of efficient and cost-effective genome
sequencing has opened the door for various novel research
directions in genomics. In recent years, researchers have fo-
cused on revealing the correlation between genetic variants and
an individual’s predisposition to diseases or response to the
treatment. Thus, genomic data has become popular for early
diagnosis and proper treatment of diseases [25]. For example,
people having family history of HIV, cancer, leukemia, heart
disease, or diabetes may want to measure the risk of inheriting
these diseases in advance so that proper diet and preventive
treatment can be adopted [1]. Besides, accurate dosage of
medicine can also be suggested according to patients’ genetic
makeup [19].

With this pervasive usage of genomic data in personalized
medicine, privacy of an individual is going through potential
risks, as genomic data may reveal sensitive information re-
garding an individual’s ethnicity, ancestry, phenotypic traits,
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health conditions and susceptibility to specific diseases [16].
In addition, a person’s genomic data can reveal sensitive
information of the person’s close relatives (possibly without
their consents) due to hereditary nature of genome [17].
Therefore, to continue the growth of revolutionary applications
on genomes, privacy protection is essential. We focus on
protecting privacy of genome data while processing a disease
risk query, i.e., the probability of an individual to develop a
specific disease.

Besides protecting privacy of genome data, another major
challenge is to authenticate a disease risk query. Processing
a person’s disease risk query involves outside entities like a
data center, and thus raises concerns on the reliability of the
genome data used for a disease risk query and the correctness
of the computed disease risk. Authentication ensures that the
disease risk is correctly computed using a person’s actual
genome data. We develop a novel secret sharing approach for
privacy-preserving authenticated disease risk queries.

Gene sequencing is done by a certified Sequencing Institute
(SI) [7], [8], [9], [12], [15], which may be directed by the
government or any trusted party. In our approach, the SI
distributes SNPs [4] (Single Nucleotide Polymorphism) of
genome data among several authorized Distributed Databases
(DDBs), where one DDB is located at the patient’s device.
The key idea of our approach is that SNPs remain hidden in
an aggregate form, and the probability to develop a specific
disease is computed by combining partial genetic scores for the
specific disease from all the DDBs. If a dishonest DDB alters a
patient’s SNP data and provides a wrong partial genetic score,
then our authentication technique can detect the alteration
using an authentication key generated based on the stored
SNP data at the DDB and thus verify the correctness of the
computed disease risk. Additionally, we show that not a single
SNP of a patient can be identified without involving the patient
even if all the DDBs become compromised. The portion of
data that our approach stores on a patient’s device does not
cause any significant overhead in terms of the storage size. On
the other hand, our approach does not store the full data on a
patient’s device to ensure that it is also not possible to identify



a patient’s SNP from the patient’s DDB without compromising
the other DDBs.

Over the last years, though researchers have developed a
few cryptographic approaches for privacy-preserving disease
risk queries [7], [8], [9], [12], [14], [15], these approaches
cannot authenticate the query answer. Another major limitation
of these techniques is that they cannot answer a disease
risk query accurately when different alleles of the same
SNP in genomes are responsible for two or more different
diseases. For example, allele C of SNP rs6313 holds higher
risk for rheumatoid arthritis, whereas allele T of the same
SNP contributes to depression, panic and stress response [5].
Specifically, existing approaches [7], [8], [9], [12], [15] store
the frequency of one allele for an SNP (considering that this
allele is always responsible for diseases) in encrypted form
in a single Data Center (DC). The DC can only partially
decrypt the frequency information when it receives a disease
risk query from a Medical Unit (MU). Though all common
SNPs have two possible allele variations, it is not possible
for the DC to infer the frequency of the other allele in the
SNP from the partially decrypted frequency of one allele. The
DC sends encrypted frequency information (not the partially
decrypted ones) to the MU. The MU can also partially decrypt
the frequency information and thus, cannot infer the frequency
of the other allele. Only possible way to infer the frequencies
of both alleles is the collusion of the MU and the DC, which
is not allowed since the collusion will eventually reveal the
genome data to both parties and violate user privacy. These
two limitations are not possible to overcome by any trivial
computation. On the other hand, our approach ensures privacy
of genomes even if the dishonest MU and the DDBs collude
and can evaluate disease risk queries when two alleles of
the same SNP are responsible for two or more different
diseases. Recently, in [23], Turkmen et al. have proposed
a cryptographic approach to authenticate computed disease
risks. However, this approach also has not considered storing
both alleles or a dishonest medical unit. More importantly,
the authors have not performed any experiment to validate the
performance of their approach.

Besides, existing approaches incur high storage overhead
due to encryption and the overhead would be doubled if the
encrypted frequencies of both alleles of an SNP are stored.
Nowadays, the provision of low cost genome sequencing is
attracting an increasing number of people to use disease risk
queries. The number of SNPs responsible for different diseases
is also increasing. Thus, reducing the storage overhead has
become an important challenge for any privacy preserving
approach for disease risk queries. Our approach offers a
substantial improvement in reducing storage cost.

A disease risk query for a patient is processed using an
MU’s disease marker that consists of the SNPs associated with
a particular disease, their risk alleles (i.e., which one of the two
possible alleles of each SNP is responsible for this particular
disease), and contribution factors of risk alleles. Though the
SNPs associated with a particular disease and risk alleles are
publicly known, it may happen that an MU wants to keep

contribution factors of risk alleles confidential from others.
On the other hand, it is possible to infer the name of a disease
from the publicly available contents of the disease marker,
i.e., the SNPs associated with a particular disease and risk
alleles. However, a patient may not feel comfortable to disclose
the disease name such as Alzheimer’s to any party except the
MU for treatment purposes. Thus, it is also essential to hide
the number and IDs of SNPs and their risk alleles used in
the disease risk query to protect privacy of the disease name.
Our approach ensures the privacy of a patient’s genomic and
clinical data, an MU’s disease marker, disease name, and the
query answer, i.e., the probability of a patient to develop a
particular disease.

To the best of our knowledge, we develop the first secret
sharing approach for privacy preserving authenticated disease
risk queries that eliminates the cryptographic overheads for
processing encrypted genomes. In summary, the contributions
of our paper are as follows:
• We propose a novel secret sharing approach to privately

compute the probability of a patient to develop a specific
disease without revealing genomic data, clinical data, the
disease name and the query answer to others.

• We ensure that our proposed technique can evaluate
disease risk queries when different alleles of the same
SNP are responsible for different diseases.

• We authenticate the query results sent by dishonest DDBs
to ensure the correctness of the disease risk.

• We protect privacy of genome data against the dishonest
MU and its collusion with the DDBs.

• We provide solution to hide the MU’s disease markers
from others.

II. PRELIMINARIES

A. Genomic Background

DNA consists of two complimentary polymer chains of
four nucleotides: Adenine (A), Cytosine (C), Guanine (G)
and Thymine (T). If a single nucleotide in the DNA differs
between members of the same species or paired polymer
chains of an individual, the variation is called an SNP [4].
For example, DNA fragments CTGG and CCGG differ in
a single nucleotide. Each SNP carries two alleles (i.e. two
nucleotides); one at each polymer chain of the DNA. For each
of the two alleles, an SNP generally has only two probable
nucleotides among A,C,G, and T . Both probable nucleotides
of an SNP can increase risks for two or more different diseases.
For example, SNP rs6313 has two variations C and T [5]. Let
fi denote the number of risk allele ri in the SNP Si, where
fi ∈ {0, 1, 2}. That means, if C is the risk allele for any
particular disease, fi of three patients having genotype CC,
CT , and TT are 2, 1, and 0 respectively.

B. Contribution of Clinical Data in Disease Risk

Along with genomic data, clinical factors of an individual
can contribute significantly to her disease risks, especially
for chronic diseases like Coronary Artery Disease, Diabetes
etc. The clinical factors can include demographic information



(e.g., age, sex etc.), his family history of diseases, laboratory
test results (e.g., cholesterol level, blood sugar level etc.). For
this reason, clinical data should also be considered along with
genomic data in the computation of the disease risks of an
individual [22].

C. Computation of Disease Risk

The contribution factor of an SNP Si is defined as βi =
ln(ORi), where ORi represents the extent to which Si is
associated with a certain disease. Let λ be the number of
SNPs associated with disease X , βi be the contribution factor
of Si, and fi be the number of risk allele for Si. Let φ be
the number of clinical factors associated with disease X , β̄i
be the contribution factor of the clinical data Ci and vi be
the value of Ci, where vi ∈ {0, 1}. Note that we can easily
convert clinical data to binary form (e.g., whether age > 50
or not). Let Pr be the probability of a patient P to develop
disease X and Z be the total disease score. Following recent
approaches [9], [15], [12], we have

Z = ln

(
Pr

1− Pr

)
=

λ∑
i=1

βi × fi +

φ∑
i=1

β̄i × vi

⇒ Pr =
eZ

1 + eZ

(1)

III. RELATED WORK

In recent years, researchers have focused on protecting
privacy of genomic data while computing the probability of
developing a particular disease. In [8], Ayday et al. have
proposed privacy-preserving disease risk queries using mod-
ified paillier cryptosystem and proxy re-encryption. In [9],
Ayday et al. have considered clinical data in addition to
genomic data for evaluating a disease risk query. In [15],
Danezis et al. have identified that it is possible to infer disease
name from the IDs and number of SNPs used in a disease
risk query and developed solutions to overcome this attack.
In [12], Barman et al. have proposed countermeasures to
genomic data retrieval attack by dishonest-but-covert medical
unit based on the architecture of [8], [9]. Using techniques
similar to [8], Turkmen et al. used message authentication
code and verifiable computing to check correctness of disease
susceptibility tests in [23]. All of these approaches store data in
encrypted form in a semi-honest data center and require high
computing power and storage facility [6]. On the contrary, we
develop a secret sharing approach that does not need to store
encrypted genomic data. We also provide necessary authenti-
cation measures considering dishonest databases and medical
unit. Furthermore, these approaches assume that storage and
medical units never collude and also fail to give the correct
answer when two alleles of the same SNP are responsible for
two or more different diseases. These limitations have been
addressed in our approach.

All of the above approaches including ours consider the
impact of multiple genetic variants, i.e., SNPs to compute
the probability to develop a particular disease. Earlier ap-
proaches [11], [13] used a small genetic fragment for medical

tests and developed different private string searching and
sequence comparison techniques for this purpose. However,
these techniques cannot produce accurate answer for a disease
risk query as they do not take into account multiple genetic
variants needed in many medical tests [22].

It is shown in [21] that secret sharing techniques are
more efficient than encryption-based techniques for privacy-
preserving data mining with respect to communication, com-
putation and storage cost. Secure multi-party computation-
based secret sharing techniques have been used to protect
privacy in evaluating count and ranked queries [10] and
in GWAS (Genome-Wide Association Studies) [18], [26].
However, to the best of our knowledge, no previous work
adopts secret sharing techniques or naı̈ve bit encoding [24]
(the encoding that we used) to protect genomic privacy for
disease risk queries.

IV. SYSTEM OVERVIEW

Like existing systems [7], [8], [9], [15], [12], a trusted
sequencing institute (SI) performs the sequencing of genomic
data of a patient (P ). P provides her sample (e.g. hair, saliva
etc.) to the SI for genome sequencing. The SI distributes
the SNPs of P and relevant information for authentication
of genomic data among n independent databases (DDBs).
We assume that the DDBs are run by separate authorities
such as private companies, cloud storage services or non-
profit organizations under the supervision of the government.
The nth DDB is stored in the patient’s personal computer or
mobile device. The SI sends data to all the DDBs except the
nth DDB in plain format. On the other hand, the SI encrypts
genomic data and authentication key using TDES [20] before
sending them to the patient and the patient decrypts the data
before storing them to the nth DDB. At this point, it may
be argued that the SNP contents could be stored as a whole
in the patient’s device instead of n separate DDBs. However,
patient’s device can easily be hacked or stolen leaving the
genomic data in risk. In our system, we ensure that even if
the patient’s device is hacked, genomic data is secure, unless
other n − 2 DDBs are also compromised (Section V-B). The
system architecture is shown in Fig. 1.

A Medical Unit (MU) normally located at a health center,
has the IDs of SNPs and clinical data responsible for various
diseases, risk allele and contribution factor corresponding to
each SNP or clinical factor. A pseudonym is assigned to each
patient at the time of gene sequencing and used to store
genomic data in the DDBs to hide the identity of a patient from
adversaries. When a patient P wants to know her probability
of developing a particular disease X , P sends her encrypted
pseudonym to the MU. The MU decrypts the received data
using TDES. We use TDES only for securing communication
of the SI and the MU with P .

The MU sends P ’s pseudonym, the IDs of relevant SNPs,
their risk alleles, and scaled contribution factors responsible
for developing disease X and other randomly selected l − 1
dummy diseases to all n−1 DDBs except the patient’s device
and makes X indistinguishable from l diseases (details in



Fig. 1. System architecture of our secret sharing approach for privacy-preserving authenticated disease risk query

Section V-C1). The MU scales the contribution factors of
the SNPs (β) by random constants to ensure that original β
values cannot be inferred by the DDBs. Each DDB computes
partial genetic and authenticating scores using P ’s genomic
data stored in the database and scaled β values received from
the MU, and sends back the partial scores to the MU. The MU
separately sums up partial genetic and authenticating scores
sent from n − 1 DDBs. Along with these aggregated genetic
and authenticating scores, SNPs of all the l diseases, their risk
alleles and scaled contribution factors, the MU sends clinical
data related to l diseases and their contribution factors scaled
by random constants to the nth DDB at the patient’s device.
Patient P verifies the correctness of the aggregated genetic
scores using the authenticating scores sent by the MU and
the authentication key stored in its database. A patient can
detect if other n − 1 DDBs or the MU alter the genomic
data (see Theorem A.2 in Appendix). After authenticating
the aggregated genetic scores, P calculates the total genetic
and clinical scores, modifies these scores using multiplication
and addition operations, and sends to the MU. The MU first
scales back the genetic and clinical scores of the target disease
X , and then sends the combined score to P . Finally, P
accurately computes the disease risk probability by reversing
the effect of previous multiplication and addition operations
(see Theorem A.1 in Appendix).

We involve the patient to make sure that not a single SNP
is disclosed to anyone without the consent of the patient even
if the other DDBs along with the MU are compromised. One
may argue that a patient may not agree to take the burden of
authentication and storage. We note that our approach is also
applicable if a patient does not store the nth DDB, i.e., the nth

DDB is run by a separate authority like other n − 1 DDBs.
However, in this case, the patient’s privacy is slightly reduced;
SNPs of a patient can be identified and authentication process
can fail if an adversary compromises n− 1 DDBs (including

the nth DDB).

V. OUR APPROACH

We discuss the steps of our approach in the following
subsections.
A. Gene Sequencing

A patient (P ) provides her sample, e.g. saliva, hair etc. to
the SI. The SI sequences the sample and extracts SNPs from
the raw genomic data. A pseudonym and an authentication key
µ for P are generated and given to P , where µ is a constant.
The pseudonym is used instead of P ’s actual name and identity
to store her genomic data in the DDBs.

B. Storing Data in the Distributed Databases

SNPs are stored in n independent databases and all
databases (DDBs) collectively give the actual SNP contents.
Each SNP has a unique position and a unique ID and almost
all common SNPs have only two probable nucleotides among
A,C,G, and T for each of the two alleles. For example, SNP
rs6313 has two variations C and T [5]. Other two variations
A and G are not possible in SNP rs6313.

Each DDB stores nucleotides of two alleles of an SNP
separately using naı̈ve bit encoding as a bit string of length 2
(00, 01, 10, and 11 representing A, C, G, and T , respectively).
The actual nucleotide of each allele of an SNP is stored on a
randomly selected m DDBs, where m ≤ n− 2 and the other
possible nucleotide on the remaining (n−m−1) DDBs. In the
nth DDB located at the patient’s device, we store both possible
nucleotides (e.g., C and T ). For each allele of an SNP, we also
store a random weight such that the summation of weights
from all the DDBs for the true nucleotide of the allele becomes
1 and the false one becomes 0 (so that its impact on the disease
risk computation is nullified). Neither of the total weight (i.e.,
1 or 0) can be inferred unless the patient’s DDB is stolen
and other n− 2 DDBs are compromised. On the other hand,



though all n−1 DDBs store the same pseudonym for a single
patient as the primary key, it is not possible to predict the
total weight of an allele without knowing the weights stored
in the nth DDB at the patient’s device even if all n− 1 DDBs
collude.

For authentication purpose, each DDB stores another value
α for each allele of an SNP such that the summation of weights
of that allele from all the n− 1 DDBs equals the summation
of α for that allele from all n DDBs including the patient’s
device scaled by the authentication key, µ.

Let aj,k, wj,k and αj,k denote the jth allele of an SNP in
the kth DDB, its weight, and corresponding α value assigned
to it, respectively. We note that j ∈ {1, 2} as each SNP has
two alleles, k ∈ {1, 2, . . . , n − 1}, aj,k ∈ {00, 01, 10, 11}
and −100 < wj,k, αj,k < 100. The nth DDB does not have
the pseudonym but stores two possible nucleotides of each
allele aj,n,t for t ∈ {1, 2}, corresponding weights wj,k,t, and
authenticating values αj,k,t for an SNP.

Consider SNP S1 has two variations C and T and patient
P has CT in her genome for S1. Table I shows a possible
distribution of weights in 5 DDBs. For the 1st allele, we have
01 in a1,1, a1,3 and a1,5,2, and 11 in a1,2, a1,4 and a1,5,1.
The weights of 01 and 11 are 1 (w1,1 + w1,3 + w1,5,2) and 0
(w1,2 + w1,4 + w1,5,1), respectively. Thus, 01 (i.e., C) is true
content of the first allele. Similarly, we can see that 11 (i.e., T )
is true content of the other allele. Let µ = 6. We can see that
for allele 11, w1,2 + w1,4 = (α1,2 + α1,4 + α1,5,1)× 6 = 48.

TABLE I
SAMPLE ENTRIES FOR SNP S1 , k = DDB NO.

k a1,k w1,k α1,k a2,k w2,k α2,k

1 01 -12 -1 11 62 2
2 11 50 7 11 -2 2
3 01 0 -8 01 46 8
4 11 -2 -8 01 8 0

5 t = 1 11 -48 9 11 -59 6
t = 2 01 13 7 01 -54 1

C. Computation of Disease Risk

1) Query Processing at the MU: To hide the identity of
the target disease, X from a curious party at the DDBs or
eavesdroppers, the MU chooses l−1 distinct dummy diseases
(Y1, Y2, . . . , Yl−1) from different types of disease groups other
than disease X , so that the protection provided to the patient
is not mitigated. For example, if breast cancer is the targeted
disease, the dummy diseases will be chosen such that they
are not different types of cancers. Otherwise, the DDBs might
conclude that the patient has some kind of cancer.

Next, IDs of SNPs associated with all the l diseases
are retrieved with their corresponding risk alleles. Let
P(X),P(Y1),P(Y2), . . . ,P(Yl−1) be the sets of SNPs related
to target disease X and dummy diseases Y1, Y2, . . . , Yl−1,
respectively. The MU also retrieves the contribution factors of
the SNPs related to the target disease, X from its database. For
the SNPs of the dummy diseases, random values are generated
as contribution factor, β. To hide the contribution factors from
the adversaries, the MU scales the βi value of each SNP, Si

belonging to the jth disease set in the query message using
a randomly generated constant cj , where j ∈ {1, . . . , l}. The
MU does not disclose the value of cj to others. Let the scaled
βi value of each SNP Si be εi, such that εi = βi × cj . Note
that the scaling constants cjs are distinct for different diseases.

Consider an example, where the number of DDBs, n = 5
and l = 2. SNPs related to only one disease Y1 are used
as dummies along with SNPs of the target disease X . Let
P(X) = {S1, S4} and P(Y1) = {S2, S3, S5}.

All SNP sets related to different diseases with their relevant
risk alleles (ri) and scaled βi values, i.e., εi are accumulated
randomly to generate the final query message, M . The random
organization restricts the DDBs to recognize which SNP set is
related to the target disease and which ones to dummies. To
scale back the query result derived from the DDBs, the MU
saves index value, j of the target disease and constant cj . Let
this index value be γ and the constant be δ. The final query
message, M is generated as follows:

S2, 00, ε2 : S3, 01, ε3 : S5, 10, ε5 |S1, 11, ε1 : S4, 00, ε4 |

As the 2nd SNP set is associated with the target disease X ,
the MU saves γ = 2 and δ = c2 to scale back the results sent
by the DDBs. Finally, the MU sends M to each DDB except
the nth DDB at the patient’s device.

2) Partial Genetic Score Calculation at the DDBs: Each
DDB except the nth DDB at the patient’s device uses the
query message, M , and patient P ’s pseudonym, N , to cal-
culate partial genetic and authenticating scores for disease X .
Algorithm 1 shows the pseudocode used by the kth DDB to
generate the partial scores. It produces return message, Rk as
output that contains partial genetic and authenticating scores
calculated by the kth DDB.

After necessary parsing, Line 4 finds the ID of the SNP Si,
its risk allele ri and scaled contribution factor εi related to
each of the diseases in M . Using the pseudonym, N , Function
RetrieveValues in Algorithm 1 retrieves the total weight (ωi,k)
and the sum of α values (αi,k) for the risk allele, ri of SNP
Si from the kth DDB (Line 5). The function matches ri with
the stored alleles, a1,k and a2,k of Si. If both the alleles match
ri, RetrieveValues returns the summation of corresponding
weights w1,k and w2,k as ωi,k and the summation of values
α1,k and α2,k as αi,k. If one of these alleles matches ri,
RetrieveValues returns the corresponding weight as ωi,k and
the corresponding α as αi,k. If none of the alleles matches ri,
0 is returned as ωi,k and αi,k.

TABLE II
SAMPLE ENTRIES FOR SNP S4 , k = DDB NO.

k a1,k w1,k α1,k a2,k w2,k α2,k

1 00 -5 -9 00 -5 -3
2 10 -56 -10 00 -25 -9
3 00 -13 1 10 18 -6
4 10 -10 -8 10 0 4

5 t = 1 00 19 5 00 30 7
t = 2 10 66 7 10 -17 5

Consider the second SNP set 〈S1, 11, ε1 : S4, 00, ε4〉 of the
example in Section V-C1. Table II shows sample distributions



Algorithm 1 CalculatePartialGeneticScore
Input: M , N
Output: Rk, where k is the number of the DDB

1: for each disease set Tj ∈M do
2: sj,k ← 0, mj,k ← 0
3: for each SNP Si ∈ Tj do
4: Si, ri, εi ← Parse(Tj)
5: ωi,k,αi,k ← RetrieveValues(Si, ri, N )
6: sj,k ← sj,k + ωi,k × εi
7: mj,k ← mj,k +αi,k × εi
8: end for
9: Rk.append(“sj,k,mj,k :”)

10: end for
11: return Rk

of weight values in 5 DDBs for SNP S4. From Tables I and II,
we see that at the 1st DDB, the retrieved weight of risk allele
of S1 (11) and S4 (00) are, ω1 = 62, and ω4 = (-5)+(-5) =
-10 respectively. Therefore, the partial genetic score is, s1,1 =
62 × ε1 − 10 × ε4. Similarly, partial authenticating score is,
m1,1 = 2×ε1−12×ε4. In this way, 1st DDB calculates partial
genetic and authenticating scores for l = 2 combinations and
sends back reply message, R1 to the MU. A sample R1 looks
like R1 = s1,1,m1,1 : s2,1,m2,1.

3) Query processing at the MU for the nth DDB: The
MU extracts partial genetic and authenticating scores from the
return messages Rk sent by each of the n− 1 DDBs. Let sj,k
and mj,k respectively be a partial genetic and an authenticating
score sent by the kth DDB for the jth SNP set related to any
particular disease, where j ∈ {1, . . . , l}. The partial scores
in the return messages are maintained in sequence with the
SNP sets in the query message, M . The authentication process
can detect if a dishonest DDB changes the order or value of
the partial scores (see Theorem A.2 in Appendix). The MU
separately adds up all the partial genetic and authenticating
scores sent by n − 1 DDBs to generate the sum ηj,s and
ηj,m, respectively. The SNP set for each disease in the query
message, M sent to the n − 1 DDBs are concatenated with
these summation values to generate the new query message,
M̄ that will be sent to the nth DDB.

The MU retrieves the set of clinical data, N(D) and
contribution factors of these clinical data, β̄, where D can
be any of the l diseases in the query - target and dummy
ones. Each set of clinical data related to a disease is randomly
partitioned into two separate subsets. To hide the contribution
factors (secret of the MU) from malicious parties, β̄i of each
clinical data Ci associated with the rth subset of jth disease is
multiplied by a randomly generated constant c̄r,j to generate
the scaled contribution factor, ε̄i, such that ε̄i = β̄i × c̄r,j ,
where r ∈ {1, 2}, j ∈ {1, . . . , l}. Note that c̄r,j values
are distinct for different diseases. The MU saves the scaling
constants δ̄r = c̄r,j , where jth disease is the target disease.
Note that δ̄r 6= δ, where δ is the constant used to scale the
contribution factors of the SNPs related to the target disease.

Clinical data are partitioned into two subsets so that the nth

DDB cannot infer the contribution factors from the aggregated
disease risk.

All the clinical data and their contribution factors are
appended at the end of the SNP set for the related disease in
the query message, M̄ . Finally, MU sends M̄ to the nth DDB
at the patient’s device. Continuing our previous example, we
assume that N(X) = {C1, C2, C4} and N(X) is partitioned
into two subsets, N1(X) = {C1, C2} and N2(X) = {C4}. For
the dummy disease, N1(Y1) = {C3}, and N2(Y1) = {C5}.
Similar to the previous query message, M , a sample for the
new query message, M̄ can be as follows:

η1,s, η1,m;S2, 00, ε2 : S3, 01, ε3 : S5, 10, ε5 ;C3, ε̄3 :: C5, ε̄5|
η2,s, η2,m;S1, 11, ε1 : S4, 00, ε4 ;C1, ε̄1 : C2, ε̄2 :: C4, ε̄4|

4) Authentication at the nth DDB: After receiving the query
message, M̄ , the nth DDB at the patient’s device authenticates
the aggregated genetic score sent from the other n− 1 DDBs
and calculates the total genetic and clinical scores for all
the l diseases. Algorithm 2 shows the pseudocode for this
process. The input to this algorithm is the query messages,
M̄ , the SNP set related to the target disease, P(X), the
authentication key µ stored at the patient’s device, and two
randomly generated constants ρ and τ used to change the total
scores by multiplication and addition. The output is the reply
message R̄ containing the total scores of l diseases. The SNPs
associated with a particular disease and their risk alleles are
normally available in public. Since patient P naturally knows
the name of the target disease, X , we assume that P(X) is
also known to her.

Function GetIndex in Algorithm 2 matches P(X) with the
SNP sets in M̄ to find the index, γ, of the target disease,
X in the query message, M̄ . After necessary parsing, the
algorithm finds the aggregated genetic score ηj,s, aggregated
authenticating score ηj,m and ID of the SNP Si, its risk allele
ri and scaled contribution factor εi related to each of the dis-
eases in M̄ . Similar to Algorithm 1, Function RetrieveValues
in Algorithm 2 retrieves the total weight (ωi,n) and the sum of
α values (αi,n) for the risk allele, ri of SNP Si from the nth

DDB at the patient’s device (Line 6). The function matches
ri with the stored alleles, a1,n,1, a1,n,2, a2,n,1 and a2,n,2 of
Si. The weight ωi,n is calculated by summing those weight
(wi,n,t) values, whose corresponding allele encoding matches
ri, where t ∈ {1, 2}. Similarly, αi,n is calculated by summing
the αi,n,t values of the matched alleles. We note that the total
number of risk allele ri in the SNP Si is, fi =

∑
1≤k≤n ωi,k.

Line 7 multiplies αi,n values with the scaled contribution
factor, εi of each SNP Si and adds up with the aggregated
authenticating score ηj,m. The parameter ηj,m is multiplied by
the authentication key µ and checked whether the multiplied
value is equal to the aggregated genetic score ηj,s (Line 9). If
the result does not match, then the nth DDB decides that the
genetic scores are altered or disease sequence is changed by
dishonest n − 1 DDBs or a dishonest MU. Otherwise, if the
aggregated genetic score ηj,s is authenticated as correct, Line
10 checks if the jth disease is the target disease, i.e., j = γ or



Algorithm 2 CalculateAuthenticatedScore
Input: M̄,P(X), µ, ρ, τ
Output: R̄

1: γ ← GetIndex(M̄,P(X))
2: for each disease set Tj ∈ M̄ do
3: ηj,s, ηj,m ← Parse(Tj)
4: for each SNP Si ∈ Tj do
5: Si, ri, εi ← Parse(Tj)
6: ωi,n,αi,n ← RetrieveValues(Si, ri)
7: ηj,m ← ηj,m +αi,n × εi
8: end for
9: if ηj,s = ηj,m × µ then

10: if j = γ then
11: for each SNP Si ∈ Tj do
12: ηj,s ← ηj,s + ωi,n × εi
13: end for
14: ηj ← (ηj,s × ρ) + τ
15: for r = 1 to 2 do
16: η̄r,j,c ← 0
17: for each clinical data Ci ∈ subset Nr,j do
18: Ci, ε̄i ← Parse(Nr,j)
19: vi ← ReceiveValue(Ci)
20: η̄r,j,c ← η̄r,j,c + vi × ε̄i
21: end for
22: η̄r,j ← (η̄r,j,c × ρ) + τ
23: end for
24: else
25: ηj , η̄1,j , η̄2,j ← Random()
26: end if
27: R̄.append(“ηj , η̄1,j , η̄2,j :”)
28: else
29: R̄.append(“authentication error :”)
30: end if
31: end for
32: return R̄

not. If j = γ, Line 12 multiplies ωi,n values with the scaled
contribution factor, εi of each SNP Si and adds up with ηj,s
to generate the total genetic score. Line 14 multiplies the total
genetic score with the constant ρ and adds to the constant τ to
generate scaled genetic score, ηj for the jth disease. The nth

DDB at the patient’s device saves ρ and τ for final computation
of the disease risk. This scaling is done so that the MU cannot
infer the genetic score even if the patient decides to share the
final disease risk with the MU for the purpose of treatment.

Similar to the SNP sets, each clinical data Ci and its scaled
contribution factor ε̄i are parsed from the query message.
The value, vi of Ci is received from patient, P . Recall that
vi ∈ {0, 1}. In Line 20, each vi is multiplied with the scaled
contribution factor, ε̄i and summed up to generate the total
clinical score for the rth subset of the jth disease , η̄r,j,c.
Similar to Line 14, Line 22 generates scaled clinical score
η̄r,j using the same constants ρ and τ . The nth DDB saves the
values of γth genetic score, ηγ,s and clinical scores η̄r,γ,c to
check whether a dishonest MU has forged contribution factors

to infer genomic or clinical data.
In Line 25, random values are generated as ηj and η̄r,j for

a dummy disease. This is done so that a dishonest MU cannot
generate score for any disease except the target disease without
patient’s consent. Scaled genetic and clinical scores for all the
l diseases are sent in the return message, R̄ to the MU.

5) Aggregation at the MU: The MU finds the total genetic
score ηj , and the clinical scores η̄r,j corresponding to the rth

clinical data subset of the jth disease from the return message,
R̄ sent by the nth DDB, where j ∈ {1, . . . , l}, r ∈ {1, 2}.
Recall that the index value, γ and the scaling constants, δ for
genetic score and δ̄r for clinical scores related to the target
disease, X are saved at the MU during query processing.
Thus, γth scores, ηγ , η̄r,γ correspond to the target disease. The
MU scales back ηγ and η̄r,γ using the constants, δ and δ̄r
respectively and generates Z̄ by adding the results as follows,

Z̄ = ηγ × δ−1 + η̄1,γ × δ̄−1
1 + η̄2,γ × δ̄−1

2

Next, MU adds inverse of the scaling constants to generate a
value ∆ such that, ∆ = δ−1+δ̄−1

1 +δ̄−1
2 . For final computation

of the total disease risk, MU sends Z̄ and ∆ to the nth DDB
at the patient’s device.

6) Final computation at the nth DDB: After receiving Z̄
and ∆ from the MU, the nth DDB generates the final score,
Z using the previously saved constants ρ and τ such that,

Z = (Z̄ −∆× τ)× ρ−1

Final score, Z is used to compute the probability of the
patient to develop target disease, X using Equation 1.

In the nth DDB, value of Z is checked whether

Z =
ηγ,s
∆

or Z =
η̄r,γ,c

∆
for r ∈ {1, 2},

where ηγ,s and η̄r,γ,c are the genetic and clinical scores
respectively, corresponding to the target disease, X and are
saved in the nth DDB (Section V-C4). If any of these values
are equal to Z, the patient concludes that a dishonest MU
has altered contribution factors to infer her SNP contents or
clinical data and will not share the final score, Z with the MU.

VI. RESULTS

In this section, we evaluate the effect of varying the privacy
level for disease risk queries on the performance of our pro-
posed system. The privacy level is expressed using the number
of the DDBs (n), the number of diseases used in a query (l),
and the total number of SNPs related to l diseases in the query.
Values of these parameters are varied between ranges as n: 3-5,
l: 5-25, and total number of SNPs: 50-75, where default values
of n and l are 4 and 18, respectively. We use 0.3 million SNPs
from a real SNP profile [2]. The relevant information, i.e.,
SNPs, their risk alleles, clinical data and contribution factors
have been collected from [3]. We repeat every experiment for
100 disease risk queries and present the average result in terms
of storage, computational and communication overhead. To
represent the communication overhead independent of the used
communication link, we measure the communication cost in
terms of transferred data size among involved parties. We have
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Fig. 2. Effect of n on (a) storage, (b) time and (c) communication overhead

performed experiment on our proposed system on Intel Core
i5 CPUs with 2.7GHz processor under macOS using Eclipse
4.6 and MySQL database.

A. Effect of n
For evaluating authenticated disease risk query, each tuple of

a DDB entry needs 8×8 (8 character pseudonym) + 8×10 (10
character SNP ID) + 2× 2 (two 2 bit naı̈vely encoded alleles)
+ 2×8 (two 8 bit tiny integer weight of the two alleles) + 2×8
(two 8 bit tiny integer for authenticating value α of the two
alleles) = 180 bits. Only exception is the patient’s DDB for
which each tuple needs 8×10+4×(2+8+8) i.e., 152 bits, as
it does not have the pseudonym attribute but has both possible
nucleotides and corresponding weights and α values for each
of the two alleles. The patient’s DDB also saves authentication
key µ as an 8 bit tiny integer. In an unauthenticated system,
there will be no authenticating value α in the DDBs. As such,
each tuple of a DDB entry will need only 164 bits and each
tuple in the patient’s DDB will need only 120 bits. Thus to
store 50 million SNPs, total storage is (180(n− 1) + 152)×
50×106+8 bits for an authenticated system, and (164(n−1)+
120)×50×106 bits for an unauthenticated system. Again, in a
system with no privacy measure, there are only two message
transfers between the MU and a central data center for the
computation of the genetic score. However, in a system with
n number of DDBs, number of message transfers between the
MU and the DDBs is (2n+ 1) if the system is authenticated
and 2n otherwise. As such the storage size and communication
overhead increases linearly with the increase of n (Fig. 2a and
Fig. 2c). We emphasize that the DDBs are linked to the MU
with a parallel interface connections and all the DDBs compute
partial genetic scores simultaneously. Hence, with the increase
of n, the computational time is not affected significantly apart
from the time needed for the connection setup and packet
transfer. Fig. 2b shows that the computational time varies in
ms range between authenticated and unauthenticated system.

B. Effect of l and number of SNPs in a query
The time and number of bits needed to generate the query

message at the MU and the return messages with partial ge-
netic scores at the DDBs depend on the total number of SNPs
that are subject to randomly chosen (l-1) diseases. Thus, with
the increase of total number of SNPs, time and communication
overhead increases linearly (Fig. 4a and Fig. 4b). However,

Fig. 3a–3b show almost linear patterns with several peaks and
valleys. The reason behind this behavior is that the number of
SNPs related to a disease can vary in a large range. As such,
smaller value of l may result in larger number of SNPs used in
a query. Figures 3 and 4 show that communication overhead
increases slightly in an authenticated system compared to an
unauthenticated one and computational time remains almost
same in both systems. Furthermore, we note that increasing l
or total number of SNPs does not affect the storage size.
C. Comparative Analysis

We have compared the performance of our system (au-
thenticated and unauthenticated systems denoted as DA1 and
DA2, respectively in graphs) with recent cryptographic ap-
proaches [8], [15], [12] (denoted as A1, A2 and A3, respec-
tively in graphs). These approaches consider the effect of
multiple SNPs on disease risk queries. However, none of these
approaches authenticates the disease risk query.

1) Storage Overhead: In [8], two BCP ciphertexts (one for
the SNP, other for its square) for approximately 50 million
known SNPs are stored in encrypted form. Each BCP cipher-
text is a pair of 4096-bit group elements. Thus, the total storage
for 50 million SNPs is 2× (50× 106)× (2× 4096) bits, i.e.,
almost 100GB. In [15], all the 50 million SNPs are sent at
once and the storage needed to encrypt all the SNPs takes
2×(50×106)×(2×193) bits, i.e., about 4.5GB. Both of these
approaches store only the frequency of one allele in each SNP.
If these approaches consider storing both alleles, the storage
becomes double (Fig. 5a). The storage of [12] is similar to [8],
as it follows the encryption method of [8]. On the contrary, the
storage of our system depends on the number of DDBs, n. For
n = 5, which ensures a good privacy level, our authenticated
and unauthenticated approaches require about 5.08GB and
4.516GB, respectively and the cost lies below [15] till n ≤ 8
and n ≤ 9, respectively to store 50 million SNPs.

2) Communication Overhead: For n = 5, l = 18 and
the number of total SNPs related to l diseases = 68, com-
munication overhead of our authenticated and unauthenticated
systems are 8.34KB and 7.34KB, respectively. On the contrary,
in [8], the data center needs to send two BCP ciphertexts
for each SNP (one for the SNP, other for its square). If we
consider these 68 SNPs, the communication overhead entails
2 × 68 × (2 × 4096) bits, i.e., 136KB which is significantly
higher than the overhead incurred by our system (Fig. 5b). The
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Fig. 3. Effect of l on (a) time and (b) communication overhead
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Fig. 4. Effect of number of SNPs on (a) time and (b) communication overhead
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Fig. 5. Comparative analysis in terms of (a) storage and (b) communication overhead

approach proposed in [12] also incurs similar communication
traffic as [8], since these two approaches use the same encryp-
tion method. Again, the approach in [15] always uses 1 million
SNPs to hide the disease name for which its communication
cost amounts to 92MB, which is extremely high.

VII. CONCLUSION

We introduced a novel secret sharing approach to evaluate
privacy preserving authenticated disease risk queries that over-
comes the limitations of existing approaches. Our approach
can compute the probability of an individual to develop a
disease when both the alleles of an SNP are responsible for two
or more different diseases, and protect privacy of genome and
clinical data even if the MU alters important parameters and
colludes with the DDBs. Moreover, we ensure the correctness
of the disease risk query by authenticating genomic data shared
by the DDBs. Additionally, our approach protects the privacy
of contribution factors, disease name, and the query answer.

An important advantage of our approach is that the storage
cost for SNPs is reduced significantly. Experiments show that
our approach outperforms the existing approaches in terms
of storage with a large margin. Furthermore, our approach
provides a high level of privacy for a smaller value of n (i.e., 3)
and incurs less computational and communication overheads.
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APPENDIX

Theorem A.1 (Proof of Correctness). Let P(X) and N(X)
be the sets of SNPs and clinical data related to a disease X ,
where |P(X)| = λ and |N(X)| = φ. For each SNP Si ∈ P(X),
βi be the contribution factor of risk allele ri and fi be the
total number of ri in Si. For each clinical data Ci ∈ N(X),
β̄i be the contribution factor and vi be the value of Ci. Then
the total score of a patient P for developing disease X is

Z =
∑

1≤i≤λ

fi × βi +
∑

1≤i≤φ

vi × β̄i

Proof: Without loss of generality, we assume that each
SNP set related to l different diseases sent by the MU to n
DDBs has equal size λ. Recall that εi = βi × cj for the
jth disease, where j ∈ {1, . . . , l}. Parameter ωi,k represents
the total weight of the risk allele ri of SNP Si retrieved
from the kth DDB. Thus, the partial score, sj,k generated at
the kth DDB, is expressed as sj,k =

∑
1≤i≤λ ωi,k × εi. If

authentication is successful at the nth DDB, total genetic score
ηj,s is calculated as follows:
ηj,s =

∑
1≤k≤n−1

sj,k +
∑

1≤i≤λ

ωi,n× εi = cj ×
∑

1≤k≤n
1≤i≤λ

ωi,k×βi

Without loss of generality, we assume that each set of
clinical data related to l different diseases has equal size φ
and is partitioned into two subsets of equal size θ, i.e, φ = 2θ.
For each clinical data Ci in the rth subset of the jth disease,
ε̄i = β̄i × c̄r,j , where r ∈ {1, 2}. The nth DDB computes
clinical score, η̄r,j,c using the following equation:

η̄r,j,c =
∑

1≤i≤θ

vi × ε̄i = c̄r,j ×
∑

1≤i≤θ

vi × β̄i

The nth DDB changes the genetic and clinical scores using
constants ρ and τ such that ηj = (ηj,s × ρ) + τ and η̄r,j =
(η̄r,j,c× ρ) + τ . We note that cj = δ, c̄r,j = δ̄r, and ∆ = δ−1

+
∑
r=1,2 δ̄

−1
r , where jth disease is the target disease X . The

MU calculates Z̄ for j = γ such that
Z̄ = ηγ × δ−1 +

∑
r=1,2

η̄r,γ × δ̄−1
r

=
ηγ,s × ρ

δ
+
τ

δ
+
∑
r=1,2

η̄r,γ,c × ρ
δ̄r

+
τ

δ̄r

= ρ

(
ηγ,s
δ

+
∑
r=1,2

η̄r,γ,c
δ̄r

)
+ τ ×

(
1

δ
+

1

δ̄r

)

= ρ

 ∑
1≤k≤n
1≤i≤λ

ωi,k × βiδ ×
1

δ
+
∑
r=1,2
1≤i≤θ

vi × β̄iδ̄r ×
1

δ̄r

+ τ∆

= ρ

 ∑
1≤i≤λ

fi × βi +
∑

1≤i≤φ

vi × β̄i

+ τ∆,

since we have fi =
∑

1≤k≤n ωi,k from Section V-C4. Finally,
the nth DDB calculates the total score, Z as follows:
Z = (Z̄ − τ∆)× ρ−1 =

∑
1≤i≤λ

fi × βi +
∑

1≤i≤φ

vi × β̄i

It is not possible to ensure the accuracy of disease risk
queries if the MU uses inaccurate values of contribution factors
for SNPs and clinical data. Hence, we focus on the integrity
of SNP data for authentication purpose.
Theorem A.2 (Proof of Authentication). Let the number of
DDBs be n. The nth DDB can detect if the other n− 1 DDBs
or the MU alter SNP data used in a disease risk query.

Proof: Each DDB stores weight w and a value α for each
allele of an SNP. Let ωi,k and αi,k respectively be the total
weight and the total value of α for risk allele ri of SNP Si in
the kth DDB. According to Section V-B, we have∑

1≤k≤n−1

ωi,k = µ×
∑

1≤k≤n

αi,k

If the DDBs change weight or α value for an SNP or the MU
changes the sum of partial genetic and authenticating scores
generated by n− 1 DDBs arbitrarily, patient P can detect the
changes, since authentication key µ is only known to P .


