
Protecting Genomic Privacy in Medical Tests using
Distributed Storage

Maitraye Das1, Sharmin Afrose2, Tanzima Hashem3

1,2,3Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka, Bangladesh
10905052.md@ugrad.cse.buet.ac.bd, 20905028.sa@ugrad.cse.buet.ac.bd,

3tanzimahashem@cse.buet.ac.bd

ABSTRACT
With the increasing utilization of genomic data in
various medical tests, privacy of an individual is cur-
rently undergoing potential risks like genetic discrim-
ination etc. In this work, we propose a secure system
using distributed databases for storing genomic data
to calculate disease risks of a patient. Our scheme
reduces computational overhead compared to present
cryptography-based approaches. Furthermore, we of-
fer substantial development over existing methods re-
garding multiple disease risk queries.

1. INTRODUCTION
Genomics is one of the most emerging research fields in cur-
rent world. Personal genetic variation is largely associated
with an individual’s predisposition to several diseases. As
such, with the radical development in genomic research, sig-
nificant progress in diagnosis and treatment of diseases is
expected. However, with this growing utilization of genomic
data, privacy of an individual is going through potential risks
due to following reasons: (i) human genome carries valu-
able information regarding a person’s trait, health condition
and susceptibility to diseases like Alzheimer’s, (ii) even if
a person publishes his/her own DNA sequence publicly, his
relatives’ genetic information can also be extracted without
their consent [14], (iii) leakage of genetic information can
cause severe disasters resulting in genetic discrimination in
health insurance, employment, education etc.[3] Hence, pri-
vacy enhancing technologies need to be implemented in med-
ical tests so that sensitive genomic data of a person cannot
be inferred by adversaries.

For disease risk tests and personalized medicines of an in-
dividual, medical companies and hospitals need to sequence
their patients and store genomic data in their databases.
Though heavy layer of access control and legislation is ap-
plied, keeping sensitive genomic information in different hos-

Figure 1: DNA fragments showing SNP

pital’s storage is not safe, because (i) the threat from a po-
tential hacker or any resentful employee cannot be ignored
in this case, (ii) if a person undergoes medical tests in two
different hospitals, his genomic data is stored in two differ-
ent places exposing it to more probable attacks. Identity
anonymization is also ineffective for storing genomic data
[13, 9], as DNA sequence is the ultimate identifier of a per-
son [10]. Furthermore, a tradeoff between privacy of genomic
data and accuracy of medical test results needs to be done,
if techniques like obfuscation is used. Due to huge size of ge-
nomic data, encryption also adds substantial overhead and
complexity in computation of disease risks. Hence, we design
a new architecture using distributed databases for privacy
ensured storage of genomic information. In addition, our
proposed scheme offers significant development over exist-
ing techniques in answering queries about multiple disease
risks.

2. PRELIMINARIES
DNA, the main genomic material of human, is a double
stranded molecule consisting of four nucleotides, such as
Adenine (A), Cytosine (C), Guanine (G) and Thymine (T ).
Between any two given individuals, around 99.9% of the en-
tire genome is same [11]. The remaining 0.1% part is respon-
sible for many of our distinguishable characteristics. Single
Nucleotide Polymorphism (SNP) is the most common form
of human genetic variations in which a single nucleotide in
the genome differs between members of the same species
or paired chromosomes of an individual [15]. For example,
Figure 1 shows three sequenced DNA fragments from three
different persons including SNP rs6313.

So far, dbSNP has listed 112,743,739 SNPs in human pop-
ulation [1]. Each individual carries two alleles (i.e. two nu-
cleotides) at each SNP position; one inherited from mother
and one from father. SNP is called homozygous and het-



Figure 2: System architecture for disease risk com-
putation using distributed databases

erozygous respectively, depending on both the alleles being
similar or not. Generally, for a SNP associated with a par-
ticular disease, one of the alleles carries the risk and other
does not. Furthermore, it is possible that both the alleles of
a particular SNP carries risk for two different diseases [2].

3. RELATED WORK
String matching and comparison algorithms with encryption
has been used widely for protecting security of genomic data
[16, 8, 12, 7]. In [4, 5], Ayday et al. proposed a privacy-
preserving disease susceptibility test using modified Paillier
cryptosystem and proxy re-encryption. They also included
clinical and environmental data of the patients in addition
to genomic data in [6]. These works involve secure computa-
tion of weighted average similar to our proposal. However,
the main difference is in the architecture, where we used
distributed storage mechanism for protecting genomic pri-
vacy instead of cryptographic methods used in these works.
Furthermore, their proposal focuses on a particular disease,
whereas in our system, we incorporate the option to answer
multiple disease risk queries by different patients.

4. APPROACH AND UNIQUENESS
In this work, our motivation is to find a secure medical test
procedure that calculates disease risks using genomic data
and various clinical factors. The detailed system architec-
ture is shown in Figure 2.

4.1 Gene Sequencing
We propose that a sequencing institute (SI) performs the
sequencing of genomic data of a patient (P). SI sequences
the sample, e.g. saliva, hair etc. provided by P and extracts
the SNPs from the raw genomic data.

4.2 Storing Data in Distributed Databases
SI stores the SNPs in (n+1) distributed databases where n
is even. We assign four two-bit strings 00, 01, 10 and 11
to represent four bases A, C, G or T respectively. Each
database contains one bit corresponding to each SNP. First
n/2 databases contains entries such that their exclusive-or
(XOR) gives the first bit of the two-bit string. And rest
n/2 database entries give the second bit after XOR opera-
tion. The (n+1)th database is encrypted using public key
of the patient and stored in his personal device like mobile
or computer. After retrieving content of one allele of a par-
ticular SNP, we need to know whether it is homozygous or
heterozygous to find out another allele. This information is

Figure 3: Storage and Retrieval of SNP content

kept in nth database where, 0 denotes homozygous and 1
denotes heterozygous. Figure 3 shows storage and retrieval
process of SNP in detail. Here, n equals to 4.

4.3 Computation of Disease Risk
For computation of disease risk, we propose a Processing
Unit (PU) which contains the names of particular SNPs and
clinical factors responsible for various diseases. These infor-
mation are not rare, as SNPs associated with specific dis-
eases are now-a-days available from GWAS (Genome-Wide-
Association-Studies). P provides his clinical data like age,
sugar level etc. and pseudnym to the PU and asks for the
chances of a particular disease. PU conducts queries to all
the distributed databases for those SNPs of P related to the
corresponding disease. For each SNP query, P also provides
content from his personal database. PU then computes dis-
ease risk by weighted averaging contributions of all SNPs
and other clinical factors via logistic regression model. As
we are storing the actual content of the SNP in our storage,
the probability of P to grow any disease can be computed
precisely. The final result is encrypted using a public key of
P and returned to him.

Threat Model & Security Analysis
In our model, we assumed that SI is a trusted entity. This
assumption is inevitable in the sense that sequencing has to
be done at an institution to obtain the genomic profile of a
person. Government or any kind of central medical institute
can play the role of SI.

Here, we considered three types of potential adversaries.
One, hacker, eavesdropper or curious party at distributed
databases; two, disgruntled employee or malicious party at
PU; three, eavesdropper at the connection line between pa-
tient and PU. First adversary is resisted using the distribu-
tive storage mechanism. It is ensured that even if one or all
of the databases are hacked or eavesdropped, the adversaries
cannot retrieve true content of an SNP. Second adversary is
controlled by the fact that true genomic data is not revealed
unless all distributed databases including patient’s personal
one colludes. Attack from third adversary is protected using
encryption of patient’s personal database and final disease
risk result. Threat modeling is highlighted in Figure 2 along
with the system architecture.

5. CONTRIBUTIONS
The main contributions of our work are summarized in the
following.



• We develop a new architecture where a central se-
quencing institute and processing unit communicate
with the patients to satisfy their query regarding dis-
ease risk issues.

• The chances of developing multiple diseases can be
computed correctly in our proposed system which is
a significant development over the existing methods.

• Our approach shows notable reduction in computa-
tional overhead compared to current cryptography based
approaches.

• In our proposal, we managed to securely protect sen-
sitive genetic information from third parties without
compromising with the accuracy of the result which is
the most important aspect for a medical test.

6. REFERENCES
[1] National Center for Biotechnology Information,

United States National Library of Medicine (NCBI)
dbSNP build 142 for human. summary page. Visited
on 27/Feb/2015.

[2] Rs6313, SNPedia. Visited on 27/Feb/2015.

[3] E. Ayday, E. D. Cristofaro, G. Tsudik, and J. P.
Hubaux. The chills and thrills of whole genome
sequencing. arXiv:1306.1264, 2013.

[4] E. Ayday, J. L. Raisaro, and J.-P. Hubaux. Personal
use of the genomic data: Privacy vs. storage cost. In
IEEE Global Communications Conference, Exhibition
and Industry Forum (GLOBECOM), pages 2723–2729,
December 2013.

[5] E. Ayday, J. L. Raisaro, J.-P. Hubaux, and
J. Rougemont. Protecting and evaluating genomic
privacy in medical tests and personalized medicine. In
WPES’13: Proceedings of the 12th ACM Workshop on
Privacy in the Electronic Society, page 95âĂŞ106,
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